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Abstract
This paper offers an overview of the most useful methods for exploring the double pendulum
– a simple physical system with a strong sensitivity to initial conditions that displays erratic,
dynamic behavior. The energy of the system will be determined and used to derive its equations
of motion. With these equations in hand, we will adjust the parameters of the system in order to
find mathematical solutions and physical insights for various conditions and associated behaviors,
including the equations of motion and frequency of oscillation when the system is perturbed by a
small angle. The small-angle approximation will be followed by investigation of a number of special
cases when ratios between the two masses and string lengths are pre-specified. We will close with a
discussion of the double pendulum’s chaotic tendencies and the effects of varied initial conditions.

Introduction
The double pendulum is composed of a pendulum with another pendulum attached to its end.
Thus, its critical components for the purpose of mathematical and physical exploration are its two
masses, m1 and m2, its two string lengths, l1 and l2, and the angles formed between these strings
and the vertical, denoted as θ1 and θ2.

Figure 1: The double pendulum consists of a second pendulum attached to the bob of a first.
(source: Wired.com)

While both simple and double pendulums can be approximated to exhibit simple harmonic
oscillation at small angles of perturbation, the behavior of the double pendulum is far more difficult
to categorize and predict. The presence of multiple masses, string lengths and angles permit more
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conditions to be independently adjusted. Fixing various parameters leads to a host of interesting
dynamical results, many of which cannot arise in a simple pendulum, and provides an intuitive sense
of why initial conditions are so critical in determining the system’s behavior. Such dependence
on these conditions makes the double pendulum system chaotic, meaning approximations are not
enough to predict future behavior and even slight differences in initial parameters will eventually
lead to vast disparities in the motions of two systems. We will later show that tweaking initial
conditions indeed results in these types of disparities in the numerical outcome.

The Lagrangian Model
A further consequence of the double pendulum’s heightened complexity and sensitivity is the
difficulty one faces in trying to analyze it from a Newtonian point of view. For this system and
those with similarly rich dynamical motion, attempting to determine equations of motion through
Newtonian force diagrams with various angular components of multiple tensions and gravitational
effects can quickly become exasperating. A far simpler method to obtain these same equations is
the Lagrangian approach, which merely requires computation of the system’s kinetic and potential
energies.

The Lagrangian equation is given by

L = T − U (1)

where T is the kinetic energy and U the potential. After writing down the Lagrangian, the
system’s equations of motion can be obtained through the generalized Euler-Lagrange equation:

d

dt
(
∂L

∂q̇i
) =

∂L

∂qi
(2)

The Euler-Lagrange equation requires partial derivatives of the Lagrangian with respect to
both a variable and its derivative. It is important to note in the manipulation of the Lagrangian
and the Euler-Lagrange equation that the derivative q̇ is treated as its own variable: we can – and
must – differentiate the Lagrangian with respect to q̇ while holding q fixed. After determining the
two partial derivatives of L, we must remember that the third step in solving the Euler-Lagrange
equation requires a total derivative with respect to t of the partial with respect to q̇ that we have
obtained. This means that each element of the partial that depends on time must be accounted
for, likely requiring at least one iteration of the Chain Rule.

We must also remember that an Euler-Lagrange equation must be derived for each pertinent,
time-dependent variable. For a system whose Lagrangian depends on x(t), y(t), z(t), for example,
we would need to obtain an Euler-Lagrange equation for all three variables. In the case of the
double pendulum, as we shall soon see, we will need two equations corresponding to θ1 and θ2.

In order to go about solving the double pendulum using the Lagrangian approach, we must
start by defining the positions of each mass in Cartesian coordinates. From the geometry of the
given figure, those positions are

x1 = l1 sin θ1 y1 = −l1 cos θ1 (3)
x2 = l1 sin θ1 + l2 sin θ2 y2 = −l1 sin θ1 − l2 cos θ2 (4)

(5)

We can differentiate each of the positions in order to obtain the ẋ and ẏ values that will be
essential to writing the system’s kinetic energy.

ẋ1 = l1θ̇1 cos θ1 ẏ1 = l1θ̇1 sin θ1 (6)

ẋ2 = l1θ̇1 cos θ1ẋ1 + l2θ̇2 cos θ2 ẏ2 = l1θ̇1 sin θ1ẋ1 + l2θ̇2 sin θ2 (7)
(8)

From here, we can start constructing the expressions for T and U . The general form for each is

T =
1

2
mnq̇

2
i U = −mngyn (9)

2



As we know, the Lagrangian is the difference between kinetic and potential energies. Using the
expressions for the velocities and positions of each mass in both x and y, the Lagrangian can be
written as

L =
1

2
m1(ẋ1 + ẏ1)

2 +
1

2
m2(ẋ1 + ẏ1)

2 +m1gy1 +m2gy2

=
1

2
m1(l

2
1θ̇

2
1) +

1

2
m2(l

2
1θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos[θ1 − θ2]) +m1gl1 cos θ1 +m2g(l1 cos θ1 + l2 cos θ2)

(10)

From here, we can write down the appropriate partials for each angle θ1 and θ2, using these
to construct the two Euler-Lagrange equations. Remember to take full advantage of trigonometric
identities in order to simplify these equations.

0 = θ̈1l
2
1(m1 +m2) +m2l1l2θ̈2 cos(θ1 − θ2) +m2l1l2θ̇

2
2 sin(θ1 − θ2) (11)

0 = m2l
2
2θ̈2 +m2l2l2θ̈1 cos(θ1 − θ2)−m2l1l2θ̇

2
1 sin(θ1 − θ2) +m2gl2 sin θ2 (12)

These are the equations of motion when the two angles have been varied. They’re somewhat
disorderly now, but as we shall see, they will become much more streamlined after we’ve made
approximations for small angles.

Small Oscillations
We discussed earlier how both simple and double pendulums can be modeled as simple harmonic
oscillators when angles of perturbation are restricted in size. For sine and cosine, the Taylor Series
expansions about the point x = 0 are

sin θ ≈ θ

cos θ ≈ 1 +
θ2

2!

Expanding the condensed cos(θ1 − θ2) and sin(θ1 − θ2) terms, we can make the appropriate
substitutions of these approximations into Eqs. (11) and (12) and keep only linear-order terms,
yielding

0 = θ̈1l
2
1(m1 +m2) + gθ1(m1 +m2) +m2l2θ̈2(1 + θ1θ2)+,2 l1l2θ̇

2
2(θ2 − θ1) (13)

0 = m2l
2
2θ̈2 +m2l1θ̈1(1 + θ1θ2)−m2l1θ̇

2
1(θ2 − θ1) +m2gθ2 (14)

These equations can be further simplified after a few observations. We can eliminate all terms
containing θ̇2, since assuming small angles of oscillation entails assuming small angular velocities.
Squares of already-small velocities are negligibly small, so the expressions with θ̇2 terms can be
eliminated.

Additionally, we have terms of the form θ1θ2. If both angles are very small, however, then
multiplying them by each other results in a value that is negligibly small, for reasons similar to
those that allowed us to drop higher-order terms in the Taylor Series for sine and cosine.

Implementing these changes and simplifying, we find that the equations of motion for small
angle approximations are

0 = θ̈1l
2
1(m1 +m2) + gθ1(m1 +m2) +m2l2θ̈2 (15)

0 = l22θ̈2 + l1θ̈1 + gθ2 (16)
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Specific Cases
Armed with these equations of motion, we can adjust their parameters to examine the frequencies
of oscillation for special cases. Let’s look at the case when l1 = l2 = l and m1 = m2 = m. As
we shall see, the previously jumbled equations of motion will simplify to a concise expression for
the system’s oscillating frequencies. From here, we’ll be able to solve for the normal modes of the
system, completely characterizing its motion for small oscillations under these special conditions.

We start by equating the string lengths and masses to render more useful equations of motion.

0 = m(2θ̈1l + 2gθ1 + lθ̈2) (17)

0 = lθ̈2 + lθ̈1 + gθ2 (18)

We must guess the solutions to these differential equations, but we know that they will likely
take the form of exponentials, whose derivatives yield the same root expression multiplied by a
different coefficient.

Let’s make the logical guess for the time-dependent solution for each angle.(
θ1(t)

θ2(t)

)
=

(
A

B

)
eiωt (19)

Using these expressions for θ1(t) and θ2(t), we can substitute the second derivatives into the
appropriate positions within the equations of motion. The second derivatives can be written as(

θ̈1(t)

θ̈2(t)

)
=

(
−Aω2

−Bω2

)
eiωt (20)

rendering new equations of motion

0 = meiωt(−2lAω2 + 2gA− lBω2) (21)

0 = eiωt(lAω2 − lBω2 + gB) (22)

The exponentials can be eliminated from each expression since they will never equal 0, and the
mass can be factored out of the first expression. We then substitute α for ω2, as is customary in
the execution of this method, and we form the matrix representing this system of equations.(

2lα− 2g lα
−lα g − lα

)(
A

B

)
= 0 (23)

The determinant of this matrix must equal 0 in order to yield an interesting solution. Taking
this determinant, we find an equation that simplifies to

l2α2 − 4glα+ 2g2 = 0

Solving this equation for α with the quadratic formula yields the frequencies of oscillation, ω±,
that we seek.

ω± =

√
2±
√
2

√
g

l

Taking the positive and negative solutions and plugging each back into the matrix for α, the
normal modes, as confirmed in Morin’s Introduction to Classical Mechanics, can be derived.(

θ1(t)

θ2(t)

)
=

(
−1√
2

)
cos(ω+t+ δ) +

(
1√
2

)
cos(ω−t+ φ) (24)

Shown below are graphs of each normal mode in order, with g = 9.8, l = 1, and δ = φ = 0.

4



Figure 2: The graphs for the normal modes. θ1(t) is in red, with θ2(t) in blue.

Limits
Let’s examine a couple of other special cases that specifically concern limits.

When m1 >> m2

Referring back to the double pendulum diagram, this limit involves a top mass much greater than
the bottom mass. We can make a guess about the behavior of this limited system and the nature
of the associated frequencies and normal modes based on intuition. If m1 >> m2, then m1 will
essentially be fixed in place, standing still and leaving m2 to swing freely as a simple pendulum
with length l.

To go about solving for the frequencies of this system, we must approximate the relationship
between m1 and m2. This process resembles that shown in chapter six of Morin. The condition
m1 >> m2 can be written as 1 >> m2

m1
. We can express the fraction as κ.

1 >> κ

It can be shown that the frequencies of oscillation at small angles for equal string lengths but
unequal masses are given by

ω± =

√
g

l

√
m1 +m2 ±

√
m1m2 +m2

2

m1
(25)

This is the expression into which we must insert the inequality, but first it needs to be trans-
formed into a more manageable form. It’s easiest to approximate an exponentiated expression by
manipulating it into the format

(1 + x)n ≈ 1 + nx
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In our case, we can simply carry out the fraction inside the radical to render an expression
quite close to this format

ω± =

√
g

l

√√√√1 + κ±

√
m1m2 +m2

2

m2
1

=

√
g

l

√
1 + κ±

√
κ+ κ2

(26)

Following the pattern of the approximation, the frequency becomes√
g

l
(1 +

κ

2
± 1

2

√
κ+ κ2) (27)

We know that κ is very small, so it can be removed from the expression. Likewise, κ2 is trivially
small, leaving us with a solution of frequencies

ω± =

√
g

l
(1±

√
κ

2
) (28)

with normal modes(
θ1(t)

θ2(t)

)
=

(
−
√
κ

1

)
cos(ω+t+ δ) +

(√
κ

1

)
cos(ω−t+ φ) (29)

As expected, the heavy upper mass is nearly motionless while the lighter bottom oscillates as
a simple pendulum.

When l2 >> l1

In this case, the length of the bottom string is much greater than that of the top string. The
double pendulum features one mass essentially on the junction point of the system. The other
mass hangs as a simple pendulum of length l2.

We can approach this limit the same way we approached the last: by representing l2 >> l1 as
1 >> l1

l2
.

1 >> κ

It can be shown that the frequencies of small oscillations for equal masses but unequal string
lengths are

ω± =

√
l1 + l2 ±

√
l21 + l22

l1l2

√
g (30)

Using the same approximation method employed previously, the frequencies to non-trivial order
of κ are

ω± =

√
2g

l1
ω− =

√
g

l2
(31)

The normal modes, as confirmed in Morin, are(
θ1(t)

θ2(t)

)
=

(
1

−κ

)
cos(ω+t+ δ) +

(
1

2

)
cos(ω−t+ φ) (32)

These normal modes indicate that the system displays the two expected behaviors. In one
case, the top mass oscillates at high frequency, while in the second, the bottom mass functions as
a simple pendulum of length l2.
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Chaos and Numerical Solutions
As mentioned previously, the double pendulum exhibits rich dynamical motion and extreme sensi-
tivity to its parameters. These behaviors are characteristic of chaotic systems, or those subject to
nonlinear oscillation. Linearity of oscillation is implicit within a system’s equations of motion: if
the oscillating variable or its derivative is present in powers higher than linear, the system exhibits
nonlinear behavior.

Indeed, in examining the full equations of motion for the double pendulum, Eqs. 13 and 14
prior to approximation for small angles, we find order-two expressions of θ̈1 and θ̈2.

0 = θ̈1l
2
1(m1 +m2) + gθ1(m1 +m2) +m2l2θ̈2(1 + θ1θ2) + l2l1l2θ̇

2
2(θ2 − θ1)

0 = m2l
2
2θ̈2 +m2l1θ̈1(1 + θ1θ2)−m2l1θ̇

2
1(θ2 − θ1) +m2gθ2

Chaos is defined as the motion of a system whose evolution in time sensitively depends on
initial conditions. Alternatively, it can be thought of as a system’s precarious dependence on its
previous state. Although we undoubtedly know the equations governing the motion of such a
system, measurements of its state at a particular point in time may not allow us to accurately
predict future states even in the very near future.

Examples of chaotic behavior abound in the natural world: epidemics, weather patterns, and
changing animal populations are just a few systems responsive to internal and initial conditions
that are inherently unpredictable in the long term.

We can get a taste of the implications of chaotic behavior in the double pendulum by modeling
its motion with Mathematica and tweaking initial parameters, namely the initial angles θ1(0) and
θ2(0). For simplicity, initial angular velocities ˙θ1(0) and ˙θ2(0) will be fixed at 0, but these are also
viable initial parameters to vary and observe in their own right.

For the first part of this exploration, the initial angles are equal and have been set to two
different values. For each value, we will let the system evolve for seven distinct timeframes and
show the motion at each timeframe across both sets of initial conditions. The two sets of initial
angles from the vertical chosen for both θ1(0) and θ2(0) are π

2 and 7π
12 , two arbitrary values with a

disparity of π
12 between them. The timeframes at which paths of motion have been captured are

10, 20, 30, 40, 50, 60, and 90 seconds.

Table 1: Chaotic motion for initial angle disparity of π
12

Time
(s)

θ1(0) = θ2(0) =
π
2 θ1(0) = θ2(0) =

7π
2

10

20

7



30

40

50

60

90

When presented with two different initial conditions the system clearly exhibits discrepancies,
especially the bottom mass, which swings wildly and traces the chaotic pattern of each figure. The
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top mass, as we shall observe for most initial condition scenarios, traces a neat circle or partial
circle despite the behavior of the bottom mass. Note that we observe a ‘flip’ of the bottom mass
one timeframe earlier in the 7π

2 diagrams than in the π
2 .

Let’s see if discrepancies persist with an even smaller difference between the two sets of initial
conditions by repeating the same trial with π

2 and π
2.01 = 100π

201 . These values are only separated
by an interval of π

402 = 0.0078.

Table 2: Chaotic motion for initial angle disparity of π
402

Time
(s)

θ1(0) = θ2(0) =
π
2 θ1(0) = θ2(0) =

100π
201

10

20

30

40

50
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60

90

The differences in motion are not huge but are still present, and they become clear after only
40 seconds of elapsed time!

Up to this point, the two initial angles θ1(0) and θ2(0) have been equivalent. As a final step,
let’s vary one of these parameters, so that θ1(0) = π

2 and θ2(0) = 7π
2 . We’ll compare the motion

to our original parameters.

Table 3: Chaotic motion for cases when initial angles are equal and
different

Time
(s)

θ1(0) = θ2(0) =
π
2 θ1(0) = θ2(0) =

7π
2 θ1(0) =

π
2 and θ2(0) =

7π
2

10

20

30
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40

50

60

90

Chaotic tendencies continue to persist, and the motion with unequal initial angles is distinctly
diverse from that exhibited when both angles are equal to either π

2 or 7π
2 . This type of modeling

provides an easy method of verifying and visualizing the peculiar behavior of a system whose
motion is as mesmerizing as it is unpredictable.

For more interaction with the double pendulum and the ability to alter its various parameters,
click here.
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